Exercise 43

(a) For $f(x)=\frac{x}{\ln x}$ find each of the following limits.
(i) $\lim _{x \rightarrow 0^{+}} f(x)$
(ii) $\lim _{x \rightarrow 1^{-}} f(x)$
(iii) $\lim _{x \rightarrow 1^{+}} f(x)$
(b) Use a table of values to estimate $\lim _{x \rightarrow \infty} f(x)$.
(c) Use the information from parts (a) and (b) to make a rough sketch of the graph of f.

Solution

Evaluate each of the limits by plugging in the numbers.
(i) $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{x}{\ln x}=\frac{0}{-\infty}=0$
(ii) $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{x}{\ln x}=\frac{1}{-0}=-\infty$
(iii) $\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{x}{\ln x}=\frac{1}{+0}=+\infty$

Make a table with large values of x to see what happens as $x \rightarrow \infty$.

x	$f(x)$
10	4.34294
100	21.7147
1000	144.765
10000	1085.74
1000000	72382.4

The function seems to be unbounded as x increases, so

$$
\lim _{x \rightarrow \infty} f(x)=\infty .
$$

